Percentile Queries in Multi-dimensional Markov Decision Processes
نویسندگان
چکیده
Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function f , thresholds vi (one per dimension), and probability thresholds αi, we show how to compute a single strategy to enforce that for all dimensions i, the probability of outcomes ρ satisfying fi(ρ) ≥ vi is at least αi. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multiobjective model checking problem studied by Etessami et al. [18] in unweighted MDPs.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملINTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING
Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...
متن کاملAPPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING
In this paper, an interesting and easy method to solve the multi-dimensional knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA). Finally, ite...
متن کاملMaximal Cost-Bounded Reachability Probability on Continuous-Time Markov Decision Processes
In this paper, we consider multi-dimensional maximal cost-bounded reachability probability over continuous-time Markov decision processes (CTMDPs). Our major contributions are as follows. Firstly, we derive an integral characterization which states that the maximal cost-bounded reachability probability function is the least fixed-point of a system of integral equations. Secondly, we prove that ...
متن کامل